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† Departamento de Quı́mica F́ısica, Universidad de Valladolid, 47005 Valladolid, Spain
‡ Instytut Fizyki, Uniwersytet Mikołaja Kopernika, Grudzi¸adzka 5, 87-100 Torún, Poland
§ Akademia Medyczna im. Ludwika Rydygiera, Jagiellońska 13, 85-067 Bydgoszcz, Poland
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Abstract. Formulae for the evaluation of the expectation values ofrq between the relativistic
quantum defect orbital theory wavefunctions are derived. Their recursive structure leads to the
development of explicit relations between the formulae for different values ofq. The formulae
may be considered as a relativistic quantum defect orbital theory generalization of the Kramers’
relations for the hydrogenic wavefunctions.

1. Introduction

Quantum defect theories were formulated half a century ago by Bates and Damgaard [1],
Ham [2], Seaton [3] and others (for a discussion of the early quantum defect theories see the
review paper by Seaton [4]). A relativistic version of the quantum defect theory, constructed
by Johnson and Cheng [5], has been generalized and applied, mainly to scattering phenomena,
by Lee and Johnson [6] and by Chang [7], just to mention the earliest contributions.

The quantum defect method of Bates and Damgaard [1] was reformulated in the 1970s
by Simons [8] and by Martin and Simons [9, 10] in such a way that the resulting equations are
exactly solvable and the wavefunctions are also valid forr → 0. This approach is referred
to as thequantum defect orbital(QDO) method. Generalizations of the method to account
for the effects of polarization of the atomic core [11] and to describe the behaviour of the
molecular Rydberg electrons [12] have also been formulated. A relativistic generalization of
the QDO theory is straightforward. One can simply replace the Schrödinger-type equation
by its Dirac counterpart. Formally, while performing this procedure, any choice of the spinor
representation is correct. However, it has already been noticed by Dirac [13] that the relativistic
hydrogenic equation may be written in its second-order form resembling the corresponding
non-relativistic equation. Biedenharn [14] introduced a representation in which the large- and
the small-component equations are decoupled. Since then the hydrogenic Dirac second-order
equation has become a standard textbook subject (see, e.g., [15]). Also in the case of QDO
theory, using the Biedenharn representation appears to be the most natural way for its relativistic
generalization. In the Biedenharn representation the radial second-order hydrogenic Dirac
equations may be written in the same form as the hydrogenic Schrödinger equation except
for differently defined constants [16]. From this observation a two-component relativistic

‖ Author to whom correspondence should be addressed.

0305-4470/00/040823+08$30.00 © 2000 IOP Publishing Ltd 823



824 I Martin et al

version of the QDO method (RQDO) has been derived [17, 18]. Recently, a four-component
generalization of the method has also been proposed [19].

QDO and RQDO methods proved to be most useful in studies of Rydberg systems. Both
atomic and molecular Rydberg electrons may be very well described by the analytical quantum
defect orbitals. Theoretical prediction of many properties of the Rydberg systems, such as,
for example, of their long-range interactions or of their behaviour in external fields requires
the knowledge of the expectation values of powers of the radial coordinate of the Rydberg
electron. In this paper formulae for matrix elements ofrq between the RQDO wavefunctions
are derived. Though, to our knowledge, expressions for RQDO matrix elements ofrq have
never been published before, many papers were concerned with a related subject, namely with
the evaluation of these elements for the hydrogenic wavefunctions. In the non-relativistic case,
recurrent expressions for matrix elements ofrq , known as Kramers’ formulae, have already
been given in 1938 [20]. More recently, explicit expressions for wide ranges of integer [21, 22]
and non-integer [23] values ofq have been reported. For relativistic wavefunctions a closed-
form expression for the expectation values ofrq was derived by Davies in 1939 [24]. Explicit
expressions for several integer values ofq were given, among others, by Burke and Grant [25].
Later the subject was discussed by numerous authors, including Goldman and Drake [26] and
Shabaev [27]. The case of non-integer exponents has been solved by Salamin [28]. A simple
recurrent algorithm valid for integerq values and a rather complete list of references may be
found in a recent work by Andrae [29]. In this context one should also mention papers by
Kaulakys [30] and by Kwato Njocket al [31] concerned with radial dipole matrix elements.
The approach we have used in this paper is related to the one developed earlier for the case of
the hydrogenic quasi-relativistic wavefunctions [32].

2. A general formulation

The relativistic QDO (RQDO) equation expressed as the second-order Dirac equation in the
Biedenharn representation may be written as [18][

− d2

dr2
+
K

r2
− 2z

r

]
9nL(r) = 2εn39nL(r) (1)

where

K = L(L + 1) L = ε3 3 = ` + |s|−|k|−δ + c ε = ±1

s = k

|k|
√
k2 − ζ ζ = α2Z2

k =
{
j + 1

2 = ` + 1 if j = ` + 1
2

−j − 1
2 = −` if j = `− 1

2

whereδ is the quantum defect,c is an integer chosen to ensure the correct number of nodes
and the normalizability of9nL(r),

ε = E(1 + 1
2α

2E
)

z = Z(1 +α2E
)

(2)

whereE is the electron energy measured relative to the ionization limit,Z is the nuclear
charge seen by the electron at larger andα is the fine structure constant. In equation (2), for
simplicity, indicesn and3 have been omitted. Let us note that in spite of its similarity to the
radial Schr̈odinger equation, equation (1) is the second-order Dirac equation and relations (2)
link the eigenvalueεn3 with the Sommerfeldt energyE (see [16] for details).
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The relativistic quantum defectδ and the eigenvalueεn3 are related by the formula [18]

εn3 = − z2

2(ñ− δ)2 (3)

where ñ = n + |s|−|k| and n is the principal quantum number. Equation (3), though it
apparently resembles the Balmer formula, is equivalent to equation (1) in the paper of Johnson
and Cheng [5] in which they introduced the notion of the relativistic quantum defect.

If the experimental binding energy of the electron,Ex , is substituted forE then the
quantum defect becomes an empirical parameter and, according to equations (2) and (3), may
be defined as

δ = n + |s|−|k|−ν (4)

where

ν = 1− ζw√
w(2− ζw) = n− δ0 − 3

8

ζ

n− δ0
+ O(ζ 4) (5)

w = −E
x

Z2
and δ0 = n− 1√

2w
(6)

is the non-relativistic quantum defect. From here,

3 = ν − n + l + c = λ− 3

8

α2Z2

n− δ0
+ O(ζ 4) (7)

where

λ = l − δ0 + c (8)

is the non-relativistic value of3. Equations (4) and (6) establish simple relations between the
relativistic,δ, and non-relativistic,δ0, quantum defects. After some simple algebra we obtain

δ = ñ− 2(n− δ0)
2 − ζ√

4(n− δ0)2 − ζ
. (9)

A more detailed discussion of relations betweenδ andδ0 is given in [18].
In this formulation, the RQDO theory is quasirelativistic, i.e. the radial parts of the orbitals

are one-component functions. Two components of the Dirac spinor correspond to two signs of
L = ±3 in equation (1)—a detailed discussion of this point is given in [16]. It is customary
to normalize solutions of equation (1) so that

〈L|L〉 = 〈3|3〉 = 〈−3|−3〉 = 1 (10)

where〈L|L〉 ≡ 〈9nL|9nL〉. Then, equations (1) for±3may be rewritten as a pair of first-order
equations [16, 32] which are equivalent to the Dirac equation:

Ω̂ ΨnL(r) = 0 (11)

where

Ω̂ =

 −x V (r)− d

dr

V (r) +
d

dr
−x

 (12)
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is a self-adjoint first-order differential operator,

ΨnL(r) =
[
9n3(r)

9n−3(r)

]
V (r) = 3

r
− z

3
(13)

and

x = z

3

√
1−

(
3

ν

)2

. (14)

As one can easily see [16], the Dirac expectation values of an operatorωmay be expressed
in terms of〈3|ω|3〉, 〈−3|ω|−3〉 and〈3|ω|−3〉. The quasirelativistic (i.e. evaluated using
9nL(r) only) and the Dirac expectation values are identical for the nodeless orbitals. In other
cases, ifω = rq and|q| 6 2, the relative error forZ = 90 never exceeds 3% [16]—a difference
entirely negligible in a semiempirical theory.

3. Matrix elements

If we denote

Ĥ = − d2

dr2
+
K

r2
− 2z

r
(15)

then

Ĥ |L〉 = 2ε|L〉 (16)

and, as one can easily check,[
rq+1, Ĥ

] = q(q + 1)rq−1 + 2(q + 1)rq
d

dr
(17)

and[
rq+1 d

dr
, Ĥ

]
= 2qKrq−2 + q(q + 1)rq−1 d

dr
− 2(2q + 1)zrq−1− 2(q + 1)rqĤ . (18)

Equations (11), (17) and (18) lead to a set of simple recurrent relations from which
all matrix elements ofrq between the RQDO wavefunctions may be derived. In particular,
equation (17) gives

〈3|rq d

dr
|3〉 = −q

2
〈3|rq−1|3〉 (19)

and

2(q + 1)〈−3|rq d

dr
|3〉 = −[23 + q(q + 1)]〈−3|rq−1|3〉. (20)

Equation (18) combined with equations (16) and (19) gives a recurrence relation coupling
matrix elements of consecutive powers ofr:

2(q + 1)ε〈3|rq |3〉 + (2q + 1)z〈3|rq−1|3〉 + 1
4q[q2 − (23 + 1)2]〈3|rq−2|3〉 = 0. (21)

According to equation (11)

〈3|rq d

dr
|3〉 +3〈3|rq−1|3〉 − z

3
〈3|rq |3〉 − x〈3|rq |−3〉 = 0. (22)
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Combining equations (19) and (22) we have

(23− q)〈3|rq−1|3〉 = 2z

3
〈3|rq |3〉 + 2x〈3|rq |−3〉. (23)

Similarly, using equation (20) and the analogue of equation (22) withbra taken as equal to
〈−3| rather than to〈3|, we obtain

q(23− q − 1)〈−3|rq−1|3〉 − 2z

3
(q + 1)〈−3|rq |3〉 − 2x(q + 1)〈−3|rq |−3〉 = 0 (24)

and, changing3 to−3,

q(−23− q − 1)〈3|rq−1|−3〉 + 2z

3
(q + 1)〈3|rq |−3〉 + 2x(q + 1)〈3|rq |3〉 = 0. (25)

The last two equations yield

q〈3|rq−1|−3〉 = x[〈3|rq |3〉 − 〈−3|rq |−3〉]. (26)

Finally, combining equations (24) and (26), we obtain a relation which couples different matrix
elements of the same power ofr:

(q + 1)
2z

x3
〈3|rq |−3〉 = (23− q − 1)〈3|rq |3〉 − (23 + q + 1)〈−3|rq |−3〉. (27)

4. Explicit formulae

Similarly, as in the case of the hydrogenic wavefunctions, equation (21) may be used to
determine all expectation values ofrq except forq = −2. Then, settingq = 1, 2, 3 one
obtains

〈L|r−1|L〉 = z

ν2
(28)

〈L|r|L〉 = 3ν2 −K
2z

(29)

〈L|r2|L〉 = ν2

2z2

(
5ν2 + 1− 3K

)
(30)

〈L|r3|L〉 = ν2

8z3

[
5ν2(7ν2 + 5) + 4K(K − 10ν2 − 2)

]
. (31)

Matrix elements between〈3| and|−3〉 may be easily derived from equation (26):

〈3|r−2|−3〉 = 0 (32)

〈3|−3〉 = −x3
z

(33)

〈3|r|−3〉 = −3x3ν2

2z2
(34)

〈3|r2|−3〉 = x3ν2

2z3
(32 − 5ν2 − 1). (35)

Forq = −2, equations (24) and (25) give the following relation:

(2L + 1)〈L|r−2|L〉 = (2L− 1)〈−L|r−2|−L〉. (36)

This implies that

〈L|r−2|L〉 = 1

23 + ε
A (37)
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whereA does not depend on the sign ofL. A direct integration using the RQDO wavefunction
gives

〈L|r−2|L〉 = 1

(2L + ε)

2z2

ν3
. (38)

Now, all the remaining matrix elements may be easily expressed in terms of the ones already
evaluated. In particular, from equation (21)

〈L|r−3|L〉 = z

L(L + 1)
〈L|r−2|L〉 (39)

from equation (25)

〈3|r−3|−3〉 = 2x

23− 1
〈3|r−2|3〉 (40)

from equation (23)

〈3|r−1|−3〉 = 23 + 1

2x
〈3|r−2|3〉 − z

x3
〈3|r−1|3〉. (41)

Matrix elements for any other power ofr may readily be obtained from equations (21) and
(27).

In the RQDO (as well as in the QDO) method all expectation values may be expressed
in terms ofZ, of the quantum numbers, and of the experimental energies. Instead of the
experimental energies one can use, due to equations (4)–(6), either relativistic or non-relativistic
quantum defect values, however, expressions in terms of the energies are both more general
and more interesting. One should note that in the present formulation the relativistic effects
are taken into account by the structure of the formulae and quantum defects compensate for
the deviation of the atomic potential from the Coulombic form and for many-body effects (the
electron correlation) only. In particular, for|q| < 2, we have

Z2〈L|r−2|L〉−1 = p2
(
t2 −mε t

)
(42)

Z〈L|r−1|L〉−1 = p t (43)

Z〈L|r|L〉 = p(t +mε)− p

2t
M (44)

Z2〈L|r2|L〉 = p2
(
t2 + 3mε t − 3

2M + 1
2

)
(45)

wherem = n − ` − c, mε = m − ε/2, M = m(m − ε), p = {ζ/[w(2 − ζ w)]}1/2 and
t = p(1 − ζw). Due to (6), equations (42)–(45) establish simple relations between the
expectation values ofr and the experimental term energies. For the negative powers ofr the
inverse of the expectation values are given because then the structure of the equations is simpler
and more symmetric.

In order to see the relativistic corrections explicitly, it is convenient to express the
expectation values as

〈rq〉 = 〈rq〉0 + ζ1q + O(ζ 2) (46)

where〈rq〉 and〈rq〉0 denote, respectively, the RQDO and the non-relativistic QDO expectation
values ofrq . Matrix elements in the non-relativistic approximation may be easily obtained by
the following substitutions (cf equations (5), (7) and (14)):z → Z, ν → n − δ0, 3 → λ,
K → λ(λ + 1), x → Z[1/λ2 − 1/(n − δ0)

2]1/2. The relativistic corrections one can derive
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using equations (5), (7), (14) and the appropriate expression for suitable matrix element. In
particular, for|q| 6 2, by transforming equations (42)–(45), one obtains

Z2〈L|r−2|L〉−1 = 1

4w2

(
1−mε

√
2w
)− ζ

4w

(
1− 1

4mε
√

2w
)

+ O(ζ 2)

Z〈L|r−1|L〉−1 = 1

2w
− 1

4
ζ + O(ζ 2)

Z〈L|r|L〉 = 1

2w

(
1 +mε

√
2w −Mw)− 1

4ζ
(
1− 1

2mε
√

2w + 2Mw
)

+ O(ζ 2)

Z2〈L|r2|L〉 = 1

4w2

[
1 + 3mε

√
2w − (3M − 1)w

]
− ζ

4w

[
1 + 3

4mε
√

2w 1
2(3M − 1)w

]
+ O(ζ 2).

As one can see, in all cases the relativistic corrections are negative. Since forq < 0
the corrections correspond to the inverse of the expectation values, the negative relativistic
corrections reflect, in all cases, the relativistic contraction of the quantum defect orbitals.

5. Final remarks

Equations derived in this paper may be applied to an evaluation of the expectation values of
various observables which are expressible in terms of polynomials inr. Particularly, they
may be useful in studying an influence of external fields on systems described by the QDO
wavefunctions. Relations between different expectation values are also useful for an easy
checking of computer programs in which the QDO wavefunctions are used.
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